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NOTIVATION

@ Many interesting quantities to compute with
L.OQCD which involve multiple hadrons in

mnitial /final state
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NOTIVATION

@ Unlike the single hadron ground state
spectrum or matrix elements, NO simple
relation between finite-volume (F'V) matrix-
elements and infinite-volume (V) transition
amplitudes

We were motivated to determine a “master
formula” with as few approximations as
possible: 1in this work - focus on transition
form-factors between (pseudo)-scalar states



NMOTIVATION
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master formula: finite-volume matrix element of a current that

® can inject arbitrary four-momentum and angular momentum
® includes all inelastic coupled channels, “a”
® incorporates partial-wave mixing (from box and/or physics)

A column vector in angular-momentum/channel space
Ay denotes the projection onto the finite volume irrep. A row p

RA;mn; matrix: related to the residues of 'V two-particle
propagators of state ng



I AND 2 HADRON CORRELATORS
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| AND 2 HADRON CORRELATORS
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| AND 2 HADRONS

2 Kim, Sachrajda and Sharpe
O/(\u) (20 = Yo, P) = {0]Oau (o, P)O}L\“(yo, —P)[0) Nucl.Ph;Jrs. B727 (200p5)
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& T'he integration over ko puts one
hadron on-shell:

T'he integration over Py can not be
performed until non-perturbatively
summing over all diagrams




| AND 2 HADRONS

2 Kim, Sachrajda and Sharpe
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| AND 2 HADRONS

Kim, Sachrajda and Sharpe
Nucl.Phys. B727 (2005)

- e R R

K-matrix
differs from 1nfinite volume K-matrix only by terms exponentially

suppressed by mzlL,



| AND 2 HADRONS

2 Kim, Sachrajda and Sharpe
O/(\p? (0 — yo, P) = (0]Oa (o, )OAM(QO» —P)|0) " NueLPhys. B727 2005)
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Intermediate state can go on-shell J

and feel the boundary ot the box

» ower-law volume dependence
P P
(Luscher)
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| AND 2 HADRONS

(2) L Kim, Sachrajda and Sharpe
OAM (o — yo, P) = (0[Op(zo0, P)O}L\u(yoa —P)[0) Nucl.Phyjrs. B727 (200%)
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Poles of this infinite series lead to quantization condition that determines

spectrum of 1nteracting system Hansen and Sharpe PRD 86 (2012)
Briceno and Davoudi PRD 88 (2013)

det|M(E,,)] = det [K(En) + (FV(En))_l} — 0

_I_

If we only cared about the spectrum and scattering - we would be done -
this 1s a generalization of the Lischer formula relating finite-volume energy
levels to infinite volume scattering phase shifts



| AND 2 HADRONS
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For our work - we also need to know the residues of the poles
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adjugate of a matrix: V(P ar) = JoiM Po " adJ (Py.ar)

diverges at N\ finite at

eligen-energies eigen-energies



| AND 2 HADRONS

2 Kim, Sachrajda and Sharpe
O/(\u) (20 = Yo, P) = {0]Oau (o, P)(’)}L\“(yo, —P)[0) Nucl.Ph;Jrs. B727 (200p5)
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A vector in angular momentum and & Residue of two-particle
open channels; encodes off-shell propagator

artifacts
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sum over “n” runs over all energies below the N>2 inelastic threshold



| AND 2 HADRONS

2 Kim, Sachrajda and Sharpe
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| AND 2 HADRONS

for very nice example with coupled channels,
see talk by David Wilson

Monday: 15:35 Resonances in n-K scattering

see also Dudek, Edwards, Thomas and Wilson

arXiv:1406.4158



3 POINT CORRELATION FUNCTION

'T'he construction of the finite-volume matrix element follows
very closely the construction ot the two-hadron correlation
function

1—2 | J,P,| A
Ch(@r0 = Y0390 — i0) = (0104, (1,0, Pp) Ty ™M (50, Q) ¢ (210, —P3)[0)

7 X

Interpolating field optimized for Interpolating field optimized for

two-hadron state in definite irrep. one-hadron state

Current subduced onto the A irrep. of Oy

see Thomas, Edwards and Dudek Phys.Rev. D85 (2012)



3 POINT CORRELATION FUNCTION

| J, P, A
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LO transition amplitude:
LU :W-F 6 +W+

Full transition amplitude: Similar to K-matrix
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3 POINT CORRELATION FUNCTION

| J, P, A
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/ dPs o dPyo et Pi,0(Tf,0=y0) o1 Pf,0(Y0—Z4,0) + ..
2w 2w
A= 2o

Similar to K-matrix
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3 POINT CORRELATION FUNCTION
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Power-law volume corrections from on-

shell intermediate states
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3 POINT CORRELATION FUNCTION

[J, P, |\
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to extract the matrix element of interest - one must take the ratio of the 3-point
function to 1- and 2-point correlation functions (using same interpolating operators)

“after a little work” (and simultaneously beer and coffee)
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3 POINT CORRELATION FUNCTION
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to get the master formula,
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JP diagonal, kinematic
matrix
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master formula: finite-volume matrix element ot a current that
® can inject arbitrary four-momentum and angular momentum

® includes all inelastic Coupled channels, “a”
® 1ncorporates partial-wave mixing (from box and/or physics)



3 POINT CORRELATION FUNCTION
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Matrix-generalization of
Lellouch-Liischer



3 POINT CORRELATION FUNCTION
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to go from these subduced infinite-

See talk by Christian Shultz
Thur. 3:35

volume transition amplitudes to back

« to O(3) symmetric amplitudes




3 POINT CORRELATION FUNCTION

K — 77 Need to know phase shift
well enough to control

Lellouch-Liischer derivative
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3 POINT CORRELATION FUNCTION
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lowest energy state 1s P-wave S€€ talk by Christian ShUltZ
Thur. 3:35
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3 POINT CORRELATION FUNCTION

Comment on recent calculation of B — K*¢T ¢~
Horgan, Liu, Meinel, Wingate: PRL 112 (2014)
PRD 89 (2014)
1. Calculation treated K* as stable - need to use correct
FV formalism - includes S-P wave mixing (this is all

treated in our paper arXiv:1406.5965)
2. 1=1/2 Kz scattering has “quark disconnected” graphs:

this means the staggered action will give rise to
unitarity violating “haripin” interactions in the S-
channel graphs, invalidating the Llscher formalism for
understanding the two-hadron spectrum

[ believe the hairpin issue makes the calculation
practically impossible - at least with our current
understanding of scattering with PPQ effects




CONCLUSIONS

@ ' c have extended the Lellouch-Liischer method to determine
a “master formula” describing the mapping between finite-
volume matrix element calculations and the corresponding
infinite volume transition amplitudes of a current that

® can inject arbitrary four-momentum and angular momentum
® includes all inelastic coupled channels
® incorporates partial-wave mixing (from box and/or physics)

@ This new formalism is very powerful and makes as few
approximations as possible: it 1s model-independent, non-
perturbative and valid below 1nelastic thresholds
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